New Proof for Balian-Low Theorem of Nonlinear Gabor System

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gabor Schauder Bases and the Balian–low Theorem

The Balian–Low Theorem is a strong form of the uncertainty principle for Gabor systems which form orthonormal or Riesz bases for L(R). In this paper we investigate the Balian–Low Theorem in the setting of Schauder bases. We prove that new weak versions of the Balian–Low Theorem hold for Gabor Schauder bases, but we constructively demonstrate that several variants of the BLT can fail for Gabor S...

متن کامل

Differentiation and the Balian{low Theorem

\If it is true, it can be proved." | Enrico Fermi ABSTRACT. The Balian{Low theorem (BLT) is a key result in time-frequency analysis, originally stated by Balian and, independently, by Low, as: If a Gabor system fe 2imbt g(t ? na)g m;n2Z with ab = 1 forms an orthonormal basis for L 2 (R), then Z 1 ?1 jtg(t)j 2 dt Z 1 ?1 j ^ g()j 2 dd = +1: The BLT was later extended from orthonormal bases to exa...

متن کامل

Rational Time-frequency Vector-Valued Subspace Gabor Frames and Balian-Low Theorem

This talk addresses vector-valued subspace Gabor frames with rational time-frequency product. By introduction of a suitable Zak transform matrix, we characterize vector-valued subspace Gabor frames, Riesz bases and orthonorrmal bases, and the uniqueness of Gabor duals of type I and type II. Using the uniqueness results, we extend the classical Balian-Low theorem to vector-valued subspace Gabor ...

متن کامل

A Critical-exponent Balian-low Theorem

Using a variant of the Sobolev Embedding Theorem, we prove an uncertainty principle related to Gabor systems that generalizes the Balian-Low Theorem. Namely, if f ∈ H(R) and f̂ ∈ H /2(R) with 1 < p < ∞, 1 p + 1 p′ = 1, then the Gabor system G(f, 1, 1) is not a frame for L(R). In the p = 1 case, we obtain a generalization of the result in [BCPS].

متن کامل

Study of an Optimal Example for the Balian–Low Theorem

We analyze the time-frequency concentration of the Gabor orthonormal basis G(f,1,1) constructed by Høholdt, Jensen, and Justesen. We prove that their window function f has near optimal time and frequency localization with respect to a non-symmetric version of the Balian-Low Theorem. In particular, we show that if (p, q) = (3/2,3), then R |t||f(t)|dt < ∞, and R |γ|| b f(γ)|dγ < ∞, for 0 < ǫ ≤ 3/...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Function Spaces and Applications

سال: 2013

ISSN: 0972-6802,1758-4965

DOI: 10.1155/2013/530172